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Abstract
We present a divergence-free method to determine the characteristics of band structures and
projected band structures of transverse acoustic phonons in Fibonacci superlattices. A set of
bandedge equations is formulated to solve the band structures for the phonon instead of using
the traditional dispersion relation. Numerical calculations show band structures calculated by
the present method for the Fibonacci superlattice without numerical instability, which may
occur in traditional methods. Based on the present formalism, the band structure for the
acoustic phonons has been characterized by closure points and the projected bandgaps of the
forbidden bands. The projected bandgaps are determined by the projected band structure, which
is characterized by the cross points of the projected bandedges. We observed that the band
structure and projected band structure and their characteristics were quite different for different
generation orders and the basic layers for the Fibonacci superlattice. In this study, concise rules
to determine these characteristics of the band structure and the projected band structure,
including the number and the location of closure points of forbidden bands and those of
projected bandgaps, in Fibonacci superlattices with arbitrary generation order and basic layers
are proposed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Heterostructures and superlattices have been extensively
studied for their potential applications in modern electronic
and optoelectronic systems. The behavior of phonons
scattering and coupling in the superlattices has received
much attention for developing high frequency nanostructured
devices. Of these researches, periodic superlattices with a
two-layer basis, including band structures in the completely
periodic superlattices [1–12], surface phonons in semi-infinite
superlattices [13–15], localized modes in the superlattices with
cavities [16–22] and eigenstates in finite superlattices [23–26]
have been very well studied. Recently, quasi-periodic
superlattices, especially for Fibonacci systems, have received
a great deal of interest [17–20]. The Fibonacci superlattices
are made of two basic layers under the configuration of the
Fibonacci sequence. The property of phonons propagating in

these systems is quite different from that in the periodic or
random ones.

Acoustic phonons with shear horizontal polarization
propagating in infinite, semi-infinite and finite superlattices
have received much interest in recent years [5–8, 13, 15]. An
accurate determination of band structures plays an important
role in the study of phonons in the superlattices. In completely
periodic systems, band structures show the allowed and
forbidden bands of the phonon propagation. Moreover, for
semi-infinite and defect superlattices, band structure can offer
an important reference for examining the localized surface and
defect states, which should be located in the forbidden band.
Even for finite superlattices, the transmission resonance and
localization of phonons exist in the allowed band of the band
structure.

Band structures of phonons in superlattices can be
determined by the dispersion relation, which is obtained by
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the eigenenergy equation. As the generation orders of the
Fibonacci superlattice are 2 and 3, the superlattices can be
treated by bilayer periodic structures. As we know, the
dispersion relation for bilayer superlattices can be expressed
in the concise Kronig–Penney form [5, 7]. When the
generation orders of the Fibonacci superlattices are greater than
three, the band structure is usually calculated by numerical
methods [4, 15, 20–28] because of difficulty in deriving the
required analytical expressions. For these multiple basis
superlattices, several numerical methods have been proposed
for calculating the band structure. Of these methods, the
transfer matrix method is the most popular because it is easy
to calculate the dispersion relation by trace operation of the
global matrix. However, numerical instability may occur in
calculating the dispersion relation.

The band structure of acoustic phonon propagation in
Fibonacci superlattices depends on the parameters of two
basic layers as well as the generation order [16–22]. Since
the variation of the band structure seems complicated for
simultaneous variation of the basic layers and the generation
order, most investigations have addressed the effect for
different generation orders based on a few sets of basic layers.
However, as the basic layers are changed, the pattern of the
band structure may significantly differ in irregularity even
for bilayer systems. Thus, it is difficult to determine the
characteristics of the band structure for arbitrary generation
order and basic layers according to the studies for different
generation order under a few fixed basic layers. As we
know, studies of the characteristics of the band structure in the
Fibonacci superlattice affected by simultaneous change in the
basic layers and the generation order are limited.

In this paper, a novel numerically stable method based on
graph theory is presented to understand the characteristics of
the band structures of acoustic phonons with shear horizontal
polarization in Fibonacci superlattices. Graph theory has
been applied to analyze networks and linear systems [29–31].
However, to the best of our knowledge, graph theory has not
been applied to research acoustic phonons in superlattices.
Based on graph theory, a bandedge equation is drawn up in this
paper to calculate the band structure in Fibonacci superlattices
to avoid numerical instability. In this study, the characteristics
of the band structure for the Fibonacci superlattice with
different generation order and basic layers are investigated.
Moreover, we propose the relationship between the pattern of
the band structure and the projected band structure. Based on
the relation, the characteristics of the band structure of the
acoustic phonon in the Fibonacci superlattice with arbitrary
generation order and arbitrary basic layers can be determined
according to the pattern of the projected band structures.

2. Basic theory and formulation

We consider the transverse acoustic phonons propagating in
a one-dimensional periodic superlattice, in which each unit
cell is composed of two kinds of materials A and B with the
structure following the Fibonacci sequence as

Sν+1 = {Sν−1 Sν}, (1)

with S0 = {B} and S1 = {A}. In this study, materials A and B
are considered isotropic or cubic crystals.

For the isotropic material, the displacement field of the
transverse acoustic phonons u2 along the x2 axis and the
wavevector of phonons k in the (x1, x3) plane are considered.
According to the elastic equation of motion, the displacement
in layer j is given by

∂2u2( j, x1, x3, t)

∂ t2
=
[

∂2

∂x2
1

+ ∂2

∂x2
3

]
c2

t, j u2( j, x1, x3, t), (2)

where ct, j is the velocity of the transverse acoustic phonons.
For the cubic crystal, we consider the crystal with (001) in the
direction of the interfaces of each layer. Thus the equation of
motion of the displacement is

[
∂2

∂x2
1

+ ∂2

∂x2
3

]
C44, j u2 + ρ j

∂2u2

∂ t2
= 0, (3)

where C44, j and ρ j are the elastic constant and mass density,
respectively. Equation (3) can be reduced to equation (2) with
ct, j = (C44, j/ρ j )

1/2. To reduce the analysis work, we define a
wavevector k‖ along [100] without losing generality.

For the propagating modes, the displacement in layer j of
a cell is described by

u2( j, x1, x3, t) = u2( j, x1) exp(iωt − ik‖x3). (4)

The solution of the displacement field in the layer can be
represented by the summation of a forward and a backward
traveling wave. Let the displacement at the boundary of the
left and the right boundaries of the layer be U j−1 and U j ,
respectively. The displacement field in the layer is expressed
by

u2( j, x1) = 1

sin k j d j

[
U j−1 sin k j(x1, j − x1)

+ U j sin k j(x1 − x1, j−1)

]
, (5)

where k j is the transverse wavevector, defined by k j =
±(ω2/c2

t, j − k2
‖)

1/2. Since only the component of stress
p12 in each layer is not zero, p12 in layer j is given by
ρc2

t, j(∂u2/∂x1). We can express the stress by the displacement
field as

p12( j, x1) = ρ j c2
t, j k j

sin(k j d j)

[
− cos k j(x1, j − x1)U j−1

+ cos k j(x1 − x1, j−1)U j

]
. (6)

From equations (5) and (6), we see that the displacement and
stress fields at the left and right boundaries of the layer are
dependent. The boundary conditions at the interface between
two neighboring layers are the continuities of the displacement
and the normal components of the stress. At the interface
between layers j and j + 1, the boundary conditions are

u2( j, x1, j) = u2( j + 1, x1, j), (7)

p12( j, x1, j) = p12( j + 1, x1, j). (8)
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Here, we define a normalized stress variable P̄j corresponding
to the stress field at the right boundary of layer j as

P̄j = p12( j, x1, j)D/(ρr c2
t,r ), (9)

where D is the width of a cell, and ρr and ct,r are the mass
density and wave velocity of a reference media. Thus, the
relationship between the displacement and stress fields at the
left and right boundaries of the layer may be written as

U j = f j U j−1 + h j P̄j , (10)

P̄j−1 = f j P̄j + g jU j−1, (11)

where f j = sec k j d j , g j = (ρ j c2
t, j k j D tan k j d j)/(ρr c2

t,r ), and
h j = (ρr c2

t,r tan k j d j)/(ρ j c2
t, j k j D).

According to equations (10) and (11), we represent the
relations of U j−1, U j , P̄j−1 and P̄j as a two-way graph model
as shown in figure 1 [29]. For this particular modeling,
phonons in a cell with N layers can be represented by a lead
type model. Thus, the fields UN and P̄0 depend on the fields
U0 and P̄N represented by

UN = f U0 + h P̄N , (12)

P̄0 = gU0 + f P̄N , (13)

where f , g, and h are
∏N

j=1 f j/S1,N , (S1,N )−1
∑N

p=1 S p,N gp∏p−1
j=1 f 2

j and (S1,N )−1
∑N

p=1 S1,ph p
∏N

j=p+1 f 2
j , respectively,

and S p,q is the determinant for the graph from layer p to q . We
can obtain S p,q using the topology method based on the graph
for a cell and represent it as [29, 30]

S p,q =
q−p∑
s=0

q∑
i2s =p+s

i2s−1∑
i2s−1=p+s−1

· · ·

×
i3∑

i2=p+1

i2−1∑
i1=p

s∏
u=1

(
−hi2u−1 gi2u

i2u∏
j=i2u−1

f 2
i2u

)
. (14)

For the periodical structure, the displacement and stress fields
in the superlattice must obey the Bloch waves, given by
U0 = UN exp(−iφ) and P̄N = P̄0 exp(iφ). Based on the
representations of Bloch waves, we obtain a new dispersion
relation as

f 2 − 2 f cos φ − gh + 1 = 0. (15)

When |cos φ| � 1, the Bloch phase φ is a real value. In
this condition, acoustic phonons propagating in the media are
allowed and termed as the allowed band. When |cos φ| > 1, φ

is complex. Thus, acoustic phonons are evanescent and termed
as the forbidden band. At the bandedges of the forbidden band,
the value of cos φ is equal to 1 or −1. Thus, the new dispersion
relation for the bandedges is rewritten by

Je = 0 for e = 1,−1, (16)

where Je is the bandedge function defined by Je = f 2 −
2e f + 1 − gh. Equation (16) is called the bandedge equation.
Moreover, the center of the allowed band can be written as
J0 = 0. Using these equations, it is easy to determine the
bandgaps and the band structures without calculating cos φ.

Figure 1. Graph model for the acoustic phonon in a superlattice with
N layers.

3. Band structures in Fibonacci superlattices

For the Fibonacci superlattices, the band structure of the
transverse acoustic phonons depends on two basic layers and
the generation order. To interpret the effects of the materials
and structures of the basic layers on the band structure in
the superlattices, two types of materials for the basic layers
are analyzed by the present method. First, we consider that
the basic layers of the Fibonacci superlattice are made of
Nb (A) and Fe (B), called type I. The parameters for type
I superlattices are C44,Nb = 2.87 × 1010 N m−2, ρNb =
8.57 × 103 kg m−3, C44,Fe = 1.18 × 1011 N m−2 and ρFe =
7.8 × 103 kg m−3. According to the Fibonacci generation
schemes given in equation (1), we have S2 = {B A}, S3 =
{AB A}, S4 = {B AAB A}, etc. The number of layers in a
vth-generation Fibonacci superlattice Nv can be calculated by
recursive form Nv+1 = Nv + Nv−1 with N1 = 1 and N2 = 2.
The numbers of layers A and B in Sv superlattices are Nv−1

and Nv−2, respectively.
Using the present method, the band structures for a type I

superlattice with S4 basis is calculated and shown in figure 2,
in which the widths of the basic layers are dNb = dFe = 10 nm,
and the reduced frequency � is defined by � = ωD/ct,Fe. In
this figure, the dispersion curves break up into different bands,
in which the dark and white areas are the allowed and forbidden
regions, respectively. The band structure is determined by
the bandedge equations, equation (16), with e = 1 and −1
and represented by the solid and dotted lines, respectively. It
indicates that the edges of odd and even bandgaps correspond
to the roots of J1 = 0 and J−1 = 0, respectively. All
the allowed and forbidden bands are located in the region of
k‖D < ωD/ct,Nb. As the wavevector k‖ D increases, the
width of each bandgap may reduce to zero and then increase.
The asymptote line of each bandgap for infinite frequency
approaches k‖D = ωD/ct,Nb, which is denoted by line LNb in
the figure. The additional characteristics of the band structure
are the band structure at k‖ D = 0 and the location of the
closure points of each forbidden band. The band structure
for the acoustic phonon in the Fibonacci superlattice can be
estimated if these characteristics are known. However, the
additional characteristics of the band structure depend on the
basic layers and the generation order of the superlattice.

One of the closure points of each forbidden band, marked
by an open circle in the figure, has been located on a straight
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Figure 2. Band structure of the acoustic phonons propagating in the
type I Fibonacci superlattice with fourth generation versus the
wavevector k‖ D. Calculations are performed with
dNb = dFe = 10 nm. Solid and dotted lines show the roots of J+1 = 0
and J−1 = 0, respectively. The dark area presents the allowed
regions. Dashed lines LFe, LNb and LB present the relation of
k‖ D = ωD/ct,Fe, k‖ D = ωD/ct,Nb and the Brewster line,
respectively. The open circle indicates the Brewster points.

line LB with a constant slope, which is analogous to the
Brewster line in optics [6]. As the incident angle of the phonon
is identical to the one corresponding to the acoustic Brewster
line, the reflection of the phonon either from layer A to layer B
or from layer B to layer A vanishes. The Brewster angle can be
derived by zeroing the transmission coefficient of the phonon
propagating as

ω

k‖ct,A
=
{

(ρAc2
t,A)2 − (ρBc2

t,B)2

c2
t,A[(ρAct,A)2 − (ρBct,B)2]

}1/2

. (17)

From equation (17), we see that the Brewster line depends on
the materials of basic layers A and B but is independent of the
structure of the superlattice, including the widths of the basic
layers and the generation order of the Fibonacci system.

As the widths of the basic layers are changed to dNb =
4 nm and dFe = 16 nm, the band structure for the type I
superlattice with S4 basis is shown in figure 3. Since the
materials of the basic layers consist of Nb and Fe, the slope
of the Brewster line in figure 3 is the same as in figure 2.
However, the patterns of the band structure for both cases are
quite different, even if the materials and the generation order
of both superlattices are the same.

According to the graph model for the Fibonacci
superlattice, we note that the effect of each Fe layer on the
bandedge function Je can be neglected if the parameters of the
graph model for the Fe layer are gFe = hFe = 0 and fFe = 1.
This condition can be expressed by

kFedFe = nπ, where n = 1, 2, 3, . . . . (18)

Figure 3. Closure points of bandgaps for the acoustic phonons in the
type I Fibonacci superlattice with the fourth generation versus the
wavevector k‖ D. Calculations are performed with dNb = 4 nm and
dFe = 16 nm. The dotted lines show the edge of the bandgaps. The
solid lines BNb,m represent the roots of kNbdNb(F) = mπ . The
dashed lines BFe,n represent the roots of kFedFe(F) = nπ . The
dashed–dotted line LB represents the Brewster line. The cross and
open circles indicate the closure points of bandgaps on lines BNb,m

and BFe,n , respectively.

We plot the roots of kFedFe = nπ , n = 1, 2, 3, etc,
by solid lines, called line BFe,n , in figure 3. Since the Sv

Fibonacci superlattice consists of Nv−1 and Nv−2 layers of
Nb and Fe, the graph model for a cell in the superlattice
can be reduced to that for Nv−1 cascade layers of Nb.
Then, the parameters f , g and h of the graph model for a
cell of Sv Fibonacci superlattices can be reduced to f =
sec Nv−1kNbdNb, g = (ρFec2

t,FekFe D tan Nv−1kNbdNb)/(ρr c2
t,r )

and h = (ρr c2
t,r tan Nv−1kNbdNb)/(ρFec2

t,FekFeD). Based on
equation (16), the edges of the projected bandgaps for the
condition are reduced to cos Nv−1kNbdNb(F) ± 1 = 0 or
expressed by

kNbdNb = mπ

Nv−1
, where m = 1, 2, 3, . . . . (19)

Thus, solutions of Nv−1kNbdNb = mπ and kFedFe = nπ ,
m, n = 1, 2, 3, etc,, are located on the closure points of
projected bandgaps as marked by C(m/Nv−1, n) in figure 3.
It is noted that the lines of kFedFe = nπ are denoted by BFe,n .
The width ratio and the reduced frequency at the closure point
C(m/Nv−1, n) can be solved by the conditions of kNbdNb =
mπ/Nv−1 and kFedFe = nπ and represented by

k‖D = π

1 − σ 2

[
Nv−1 +

(
1 − F

F

)
Nv−2

]

×
[(

mσ

Nv−1

)2

− n2

(
F

1 − F

)2
]1/2

, (20)
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ωD

ct,Fe
= σ 2π

(1 − σ 2)1/2

[
Nv−1 +

(
1 − F

F

)
Nv−2

]

×
[(

m

Nv−1

)2

− n2

(
F

1 − F

)2
]1/2

, (21)

where σ and F are the ratio of acoustic velocity and the
width ratio of the basic layers, defined by σ = ct,Nb/ct,Fe and
F = dNb/(dFe + dNb), respectively.

In the same way, if kNbdNb = mπ , m = 1, 2, 3, etc, the
graph model for a cell of the Sv Fibonacci superlattice can be
reduced to that for Nv−2 cascade Fe layers. Thus, the bandedge
equation is reduced to cos Nv−2kFedFe ±1 = 0. The cross point
between the lines of kNbdNb = mπ and Nv−2kFedFe = nπ ,
m, n = 1, 2, 3, etc, will be located on the closure point of the
projected bandgap and marked by C(m, n/Nv−2) in figure 3.
According to kNbdNb = mπ and kFedFe = nπ/Nv−2, the
width ratio and the reduced frequency for the closure point
C(m, n/Nv−2) can be solved as

k‖D = π

1 − σ 2

[
Nv−1 +

(
1 − F

F

)
Nv−2

]

×
[
(mσ)2 −

(
n

Nv−2

)2 ( F

1 − F

)2
]1/2

, (22)

ωD

ct,Fe
= σ 2π

(1 − σ 2)1/2

[
Nv−1 +

(
1 − F

F

)
Nv−2

]

×
[

m2 −
(

n

Nv−2

)2 ( F

1 − F

)2
]1/2

. (23)

From these results, we conclude that all closure points of each
forbidden band for type I of the Sv superlattice are located on
the Brewster line or lines BNb,m , BFe,n , for m, n = 1, 2, 3, etc.
However, the locations of these closure points are complicated
since the values of k‖D and ωD/ct,Fe depend not only on the
generation order v of the superlattice but also on the parameters
for two basic layers. Moreover, the characteristics of the band
structure include not only the closure points of the forbidden
band but also the band structure at k‖D = 0. Unfortunately,
the location and width of bandgaps at k‖ D = 0 of the band
structure also depend on the generation order or the basic
layers. Thus it is difficult to see the variation of the band
structure induced by changing the parameters of the Fibonacci
superlattice.

The frequency of the Brewster points in each forbidden
band of the superlattices versus the width ratio F is shown
in figure 4, in which the generation orders 2, 3, 4, 5 and
6 of the Fibonacci superlattice are presented. We see that
the location of the Brewster point in each forbidden band
differs for different widths of the two basic layers although the
Brewster line for the superlattice is not changed. It is noted that
the frequency of the Brewster point of a Fibonacci superlattice
depends on the width ratio F of the basic layers but is
independent of the total width D of a cell in the superlattice. As
the width of layer Nb approaches zero, the reduced frequencies
of the Brewster points reach ωD/ct,Fe = 6.675, 13.35 and
20.05 for forbidden bands 1, 2 and 3, respectively. If the
width of layer Fe approaches zero, the reduced frequencies of
the Brewster points for the forbidden bands 1, 2 and 3 reach

Figure 4. Reduced frequency of the Brewster point of each
forbidden band versus the width ratio 0 < F < 1 for the acoustic
phonons in the Sv Fibonacci superlattice.

ωD/ct,Fe = 1.625, 3.25 and 4.875, respectively. It is observed
that the Brewster points for the superlattice with generation
order v = 4 are located between those for v = 2 and 3, and the
Brewster points for v = 5 is located between those for v = 3
and 4. We find that the Brewster points for the superlattice
with generation order v are located between that for generation
order v − 1 and v − 2, and converged for higher v.

Next, we study the projected bandgap structure of the
acoustic phonon in the superlattice. The projected bandgap is
defined as the bandgap of the forbidden band by zeroing the
wavevector in the direction perpendicular to the layer surface,
k‖D = 0. The projected bandgap structure for the Fibonacci
superlattices with the generation order 2–5, respectively, versus
the width ratio F is shown in figures 5(a)–(d), in which dotted
lines mark the edges of each projected bandgap. We see that
the width of all gaps vanish at the same frequency for the
condition F = 0 and 1.0 of the superlattice with different
generation orders. When the width ratio approaches zero,
the reduced frequencies of the gap centers reach ωD/ct,Fe =
π, 2π, 3π, . . .. Moreover, as the width ratio approaches one,
the reduced frequencies of the gap centers reach ωD/ct,Fe =
πct,Nb/ct,Fe, 2πct,Nb/ct,Fe, 3πct,Nb/ct,Fe, . . ..

For nonzero width ratio F �= 0, the closure points of
each projected bandgap can be analyzed by the same method
for calculating the closure points of the forbidden band in
the band structure. However, the wavevector of the acoustic
phonon in the projected band structure is not a function of
the perpendicular wavevector k‖. Moreover, the widths of the
basic layers are changed for different F . If kFedFe(F) = nπ ,
n = 1, 2, 3, etc, the parameters fFe, gFe and hFe of the graph
model become 1, 0 and 0, respectively. The graph model
for a cell of the superlattice can be reduced to that for Nv−1

cascade layers of Nb. The cross points between lines of
Nv−1kNbdNb(F) = mπ and kFedFe(F) = nπ , m, n = 1, 2, 3,
etc, will be located on the closure points of the projected

5
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(a) (b)

(c) (d)

Figure 5. Projected band structure versus the width ratio F for the acoustic phonons in the Sv type I Fibonacci superlattice. (a) v = 2,
(b) v = 3, (c) v = 4 and (d) v = 5. The solid line represents the edges of the bandgaps. The dotted lines PNb,m represent the roots of
kNbdNb(F) = mπ . The dashed lines PFe,n represent the roots of kFedFe(F) = nπ .

bandgaps marked by C(m/Nv−1, n) in figure 5, in which lines
of kNbdNb(F) = mπ and kFedFe(F) = nπ are denoted by
PNb,m and PFe,n , respectively. The width ratio and the reduced
frequency at the closure point C(m/Nv−1, n) can be solved as

F = mσ

nNv−1 + mσ
, (24)

ωD

ct,Fe
= (nNv−2 + mσ)π. (25)

In the same way, if kNbdNb(F) = mπ , m = 1, 2, 3, etc, for
nonzero width ratio F �= 0, the bandedge equation for the Sv

Fibonacci superlattice is reduced to cos Nv−2kFedFe(F) ± 1 =
0. The cross point between lines of kNbdNb(F) = mπ and
Nv−2kFedFe(F) = nπ , m, n = 1, 2, 3, etc, will be located
on the closure point of the projected bandgap and marked by
C(m, n/Nv−2) in figure 5. The width ratio and the reduced
frequency for the closure point C(m, n/Nv−2) can be solved
as

F = m Nv−2σ

n + m Nv−2σ
, (26)

6
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Table 1. The values of M (4)

A, j , M (4)

B, j and M (4)

j for calculating the total
number of closure points in projected bandgap j within the range of
0 < F < 1 for the Fibonacci superlattice with generation order 4.

Number of closure points
No. of
projected gap M (4)

A, j M (4)

B, j M (4)

j

1 0 0 0
2 0 0 0
3 0 1 1
4 1 1 2
5 0 2 2
6 1 2 3
7 1 3 4
8 1 3 4
9 1 4 5

10 2 4 6
11 1 5 6
12 2 5 7
13 2 6 8
14 2 6 9

ωD

ct,Fe
= (n + m Nv−1σ)π. (27)

From figures 5(a)–(d), we conclude that all the closure points
of each projected bandgap are located on the lines PNb,m or
PFe,n , form, n = 1, 2, 3, etc, in each Sv superlattice.

According to the results given in figures 5(a)–(d), the
number of closure points of each projected bandgap within the
region of 0 < F < 1.0 for type I superlattice can be calculated
by

M (v)
j = M (v)

A, j + M (v)
B, j , (28)

where M (v)

j is the total number of closure points of projected
bandgap j for the Fibonacci superlattice with generation
order v. M (v)

B, j is the number of closure points on lines of

kFedFe(F) = nNv−2π , n = 1, 2, 3, etc, M (v)
A, j is the number

of the closure points only on the lines kNbdNb(F) = m Nv−1π

but not on the lines of kFedFe(F) = nNv−2π , m, n = 1, 2, 3,
etc. Table 1 illustrates the number of closure points in each
projected bandgap of the S4 superlattice based on the present
method and figure 5(c). We find that M (v)

A, j and M (v)
B, j for the Sv

type I superlattice can be calculated by the following recursive
form:

M (v)
A, j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M (v)
A, j−Nv−1

for j > Nv−1 ,

and Rem( j/Nv−1) = Nv−2

M (v)

A, j−Nv−1
+ 1 for j > Nv−1 ,

and Rem( j/Nv−1) �= Nv−2

(29)

M (v)

B, j = M (v)

B, j−Nv−2
+ 1 for j > Nv−2, (30)

with M (v)
A,1 = M (v)

A,2 = · · · = M (v)
A,Nv−1

= 0 and M (v)
B,1 = M (v)

B,2 =
· · · = M (v)

B,Nv−2
= 0. The function of Rem in equation (29) is

the reminder operation.
Let us consider the case of S4 and type I superlattice. From

figure 5(c), we observed that the number of closure points of
the projected bandgap within the region of 0.2 < F < 1.0
for gap j = 1, 2, etc, denoted by M (I,4)

j,0.2<F<1.0, is given in

Table 2. Comparison between the total number of closure points in
gap j of the projected band structure within the range of
0.2 < F < 1 and that in forbidden band j of the band structure in
the superlattice with F = 0.2 for type I and II of S4 superlattices.

Type I superlattice Type II superlattice

Gap no. M (I,4)

j,0.2<F<1.0 M̄ (I,4)

j,F=0.2 M (II,4)

j,0.2<F<1.0 M̄ (II,4)

j,F=0.2

1 0 1 0 0
2 0 1 0 0
3 0 1 0 0
4 2 3 1 1
5 1 2 1 1
6 2 3 1 1
7 2 3 2 2
8 2 3 1 1
9 3 4 2 2

10 3 4 3 3
11 4 5 2 2
12 4 5 3 3

column 2 of table 2. According to the band structure of the
superlattice with F = 0.2 as shown in figure 3, the number
of closure points in forbidden band l = 1, 2, etc, of the band
structure, denoted by M̄ (I,4)

j,F=0.2, is shown in column 3 of table 2.

Notably, the value of M (I,4)

j,0.2<F<1.0 is equal to 1 subtracted from

M̄ (I,4)

j,F=0.2 for j = l = 1, 2, etc. It indicates that for the Sv type
I superlattices, the number of closure points in the forbidden
band j of the band structure for width ratio F1, except for the
Brewster point, is identical to that of closure points in projected
bandgap j within the region of F1 < F < 1.0 expressed by

M (I,4)
j,0.2<F<1.0 = M̄ (I,4)

j,F=0.2 − 1. (31)

The band structure in figures 2 and 3 and the projected
bandgap in figure 5 can also be determined by the traditional
method according to the values of cos φ. A comparison of
the numerical stability of calculation by the present and the
traditional methods is performed. We first consider an S8 type
I superlattice with dFe = dNb = d = 10 nm: the upper bounds
of the band structure calculations using the present method and
the traditional method for various frequencies ω are compared
in figure 6. In the example, the maximum absolute values of
J+1, J−1, J0, f , g and h for the present method and cos φ

for the traditional method are also considered. Since the
amplitude of the acoustic phonon decays for the condition of
k‖D > ωD/ct,Nb, the allowed bands should be located on
the left-hand side of the line k‖ D = ωD/ct,Nb, as shown
in figures 2 and 3. Thus, the range for calculation by both
methods is also considered under 0 < k‖ D < ωD/ct,Nb. From
the figure, we find that the upper bound of the calculation
in the range by our method is almost constant for different
frequencies but the upper bound by the traditional method is
enlarged exponentially by increasing the frequency.

We next study the band structure in the Fibonacci
superlattices with different generation orders by the present
and traditional methods. The calculation is examined by both
methods for a given frequency, ωd/ct,Fe = 2, in the range
of 0 < k‖ D < ωD/ct,Nb. These are type I superlattices
with dFe = dNb = d = 10 nm for each generation order.
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Figure 6. Comparison of the upper bounds versus frequencies in
calculating the band structure by the present and traditional methods
for a Fibonacci superlattice with eighth generation. The range
considered in the traditional method is only 0 < k‖ D < ωD/ct,Nb,
but that in the present method is extended to k‖ D > 0. The circle and
the cross pattern presents the maximum absolute values of the
calculations in the present method and the traditional method,
respectively.

Figure 7. Comparison of the upper bounds in the band structure
calculations by the present method and traditional method for the
Fibonacci superlattice with vth generation at ωd/ct,Nb = 2. The
upper bound of the present method (circle) is considered by the
maximum absolute value of J±1, J0, f , g and h. The upper bound of
the traditional method (cross) is considered by the maximum
absolute value of cos(K L). The range considered in the traditional
method is only 0 < k‖ D < ωD/ct,Nb, but that in the present method
can be extended to k‖ D > 0.

Figure 7 shows a comparison of the maximum absolute values
in the calculation by the present and traditional methods. We
note that the upper bound in the traditional analysis increases
exponentially for increasing generation order but does not
enlarge for a higher generation order in the present method.

Next, we examine a Fibonacci superlattice consisting of
elements Au (A) and Si (B). The material properties are
C44,Au = 4.17 × 1010 N m−2, ρAu = 1.932 × 1010 kg m−3,
C44,Si = 7.96 × 1010 N m−2 and ρSi = 2.33 × 103 kg m−3.
The ratio of acoustic velocity σ and the width ratio of the
basic layers F for the superlattice is defined by σ = ct,Au/ct,Si

Figure 8. Band structures in the S4 type II superlattice with
dAu = 4 nm and dSi = 16 nm (F = 0.2). The dotted lines show the
edge of the bandgaps. The solid lines BAu,m represent the roots of
kAudAu(F) = mπ . The dashed line BSi,n represents the roots of
kSidSi(F) = nπ . Dashed–dotted lines LSi and LAu represent the
relation of k‖ D = ωD/ct,Si and k‖ D = ωD/ct,Au, respectively. The
cross and open circles indicate the closure points of bandgaps on
lines BNb,m and BFe,n , respectively.

and F = dAu/(dAu + dSi), respectively. Figure 8 provides
the band structures of the transverse acoustic phonon in the
Fibonacci superlattice with generation order 4, dAu = 4 nm
and dSi = 16 nm (F = 0.2). The Brewster line does
not exist in the band structure of this type of superlattice,
called a type II superlattice. It is noteworthy that there are
no closure points in the fundamental and second forbidden
bands of the band structure in the superlattice. We observe
that the slope of the Brewster line ω/k‖ct,A for the type II
superlattice becomes imaginary. According to equation (17),
if a Fibonacci superlattice with either ρBct,B(ρAct,A)−1 < 1
and ρBc2

t,B(ρAc2
t,A)−1 > 1 or ρBct,B(ρAct,A)−1 > 1 and

ρBc2
t,B(ρAc2

t,A)−1 < 1, there are no Brewster points in the
superlattice.

The bandedges of each projected bandgap for the width
ratio 0 < F < 1 for S4 type II superlattices is shown in
figure 9. As the width ratio approaches zero, the reduced
frequencies of cross points of each bandgap are equal to
ωD/ct,Si = π , 2π , 3π , etc. Moreover, as the width ratio
approaches one, the reduced frequencies of the gap centers
reach ωD/ct,Si = πct,Au/ct,Si, 2πct,Au/ct,Si, 3πct,Au/ct,Si, etc.
We see that the pattern of the projected bandgap in the range
of 0 < F < 1 for the Sv Fibonacci superlattice of type II
is similar to type I. The number of closure points in each of
the bandgaps of the projected band structure for types I and
II of the Fibonacci superlattices are identical and counted by
equation (28) with equations (29) and (30).

Based on figure 9, the number of closure points in the
range of 0.2 < F < 1.0 for each projected bandgap, denoted
by M (II,4)

j,0.2<F<1.0, is illustrated in column 4 of table 2. Column 5

8
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(a) (b)

(c) (d)

Figure 9. Projected band structure versus the width ratio F for the acoustic phonons in the Sv type II Fibonacci superlattice. (a) v = 2,
(b) v = 3, (c) v = 4 and (d) v = 5. The solid line represents the edges of the projected bandgaps. The dotted line PAu,m and dashed line PSi,n

correspond to the roots of kAudAu(F) = mπ and kSidSi(F) = nπ , respectively.

of table 2 shows the number of closure points of each forbidden
band in the band structures for F = 0.2, denoted by M̄ (II,4)

j,F=0.2,
which is counted from figure 8. It points out for the Sv type II
superlattices, the number of the closure points in the forbidden
band j of the band structure for width ratio F1, except for the
Brewster point, is identical to that of the closure points in the
bandgap j of the projected band structure within the region of
F1 < F < 1.0, expressed by

M (II,4)
j,0.2<F<1.0 = M̄ (II,4)

j,F=0.2. (32)

From these results, we find that the number of closure points
of each forbidden band in the band structures for a given width

ratio F1 depends on each projected gap within the range of
F1 < F < 1.0 based on the relation of equations (31) and (32)
for the superlattice types I and II, respectively.

4. Conclusions

We have presented the band structure and projected band
structure of the transverse acoustic phonons propagation in
Fibonacci superlattices calculated by a bandedge equation. The
bandedge equation is formulated by an analytical and concise
form based on a graph theory. Numerical results show that
computing the band structure for Fibonacci superlattices by

9
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the traditional method may have numerical instability, but the
present method is divergence-free.

The characteristics of the band structure of the acoustic
phonons in Fibonacci superlattices, including the closure
points and the projected gaps of each forbidden band, are quite
different for changing generation orders or basic layers. It
is interesting that the superlattice can be classified into two
types, type I and type II, based on the materials of the basic
layers. The patterns of projected band structures of type I and
II superlattices are similar, but the band structures of both types
are quite different. We find that the characteristics of the band
structure for both types I and II can be determined by concise
formulae and the projected band structure.

According to the present method, we can exactly
determine the characteristics of the band structure and
projected band structure for Fibonacci superlattices with
arbitrary generation order and basic layers. Although only the
materials Nb/Fe and Au/Si have been examined in this study,
these obtained results can be extended to the superlattices made
of other materials, such as semiconductors and compound
semiconductors. In addition, the characteristics of the band
structure and projected band structure can offer an important
reference to studies of the transmission resonance, localized
states, density of states, coupling of phonons and electron–
phonon interaction for superlattices with various structures.
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